Pathview是一个可视化KEGG通路的R包,它会在线从KEGG网站上下载KEGG通路,并进行个性化处理,例如填上不同的颜色 。 今天就来分享一下如何用Pathview画出高大上的基因与代谢通路热图。 基因热通路图
在此之前现在R中把必要的包安装好,并加载上
if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install(c("Rgraphviz", "png", "KEGGgraph", "org.Hs.eg.db","pathview","gage")) library(pathview) 首先,我们把数据准备好,第一列为基因的ENTREZ号,第二列为基因的变化倍数![](https://www.maimengkong.com/content/uploadfile/202206/6793583a63510467dcb407b491a20cf220220629063833.png)
把数据导入R中data<-read.csv("data1.xls",row.names=1,sep="\t",head=T)
head(data,10)
开始进行绘制图片,gene.data是用于绘图的数据,pathway.id是需要绘制的KEGG通路号,species是物种的简称,out.suffix是导出的数据后缀pv.out <- pathview(gene.data = data, pathway.id = "04110",species = "hsa", out.suffix = "data1")
运行完成后,可以看到文件夹下出现了三个文件,其中带data1的是绘制完的图片,其他是用于绘图的KEGG原始数据。查看图片结果,可以看到基因的变化已经用热图的形式展现在通路上了
分为两个图层,图像的立体感增加了pv.out <- pathview(gene.data = data, pathway.id = demo.paths$sel.paths[i],
species = "hsa", out.suffix = "data1", kegg.native = T,
same.layer = F)
![](https://www.maimengkong.com/content/uploadfile/202206/eb312f54cc61c1d30a44be5e19fe80c620220629063833.png)
也可以批量对几条通路同时进行上色,先定义几条通路
得到了所有选择的通路结果
可以直接导出pdf格式,先定义图例位置
pv.out <- pathview(gene.data = data, pathway.id = mypath,
species = "hsa", out.suffix = "data3", kegg.native = F,
sign.pos = sign)定义图例位置
![](https://www.maimengkong.com/content/uploadfile/202206/8272c35f0405daaccdb35d3bece5d0bf20220629063834.png)
![](https://www.maimengkong.com/content/uploadfile/202206/d7fa32af9f8edd2e876c25480a01472a20220629063834.png)
![](https://www.maimengkong.com/content/uploadfile/202206/3da96f9f188baaaa8a8da997e01608df20220629063834.png)
线段拓宽pv.out <- pathview(gene.data = data, pathway.id = demo.paths$sel.paths[i],
species = "hsa", out.suffix = "data5", kegg.native = F,
sign.pos = demo.paths$spos[i], split.group = T, expand.node = T)
![](https://www.maimengkong.com/content/uploadfile/202206/9a8e7d686211f07a4fde9dc6ca0154fd20220629063834.png)
下面开始画代谢物的通路热图,第一列是化合物的CPD号,第二列是变化倍数 导入数据,并开始绘制 data2<-read.csv("data2.xls",row.names=1,sep="\t",head=T)
pv.out <- pathview(cpd.data = data2,
pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "data6",
keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i])
![](https://www.maimengkong.com/content/uploadfile/202206/671f6c6fc6325d7efcfd11ad31b06a1e20220629063835.png)
![](https://www.maimengkong.com/content/uploadfile/202206/cd2dd73c9587ca45cae9f7f187526e2820220629063835.png)
展现不同数据中同一条通路的代谢物变化,先准备数据,并导入
pv.out <- pathview(gene.data = gse16873.d[, 1:3],
cpd.data = data3, pathway.id = demo.paths$sel.paths[i],
species = "hsa", out.suffix = "data8", keys.align = "y",
kegg.native = T, match.data = F, multi.state = T, same.layer = T)
![](https://www.maimengkong.com/content/uploadfile/202206/dcc103ea07e29e8760a4dca04789285220220629063835.png)
准备多组数据并导入
进行t检验data.t <- apply(data, 1, function(x) t.test(x,
alternative = "two.sided")$p.value)
根据基因的t检验结果和代谢物的差异倍数进行筛选
sel.genes <- names(data.t)[data.t < 0.1]
sel.cpds <- names(sim.cpd.data)[abs(sim.cpd.data) > 0.5]
得到挑选的基因和代谢物的结果 pv.out <- pathview(gene.data = sel.genes, cpd.data = sel.cpds, pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "sel.genes.sel.cpd", keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i], limit = list(gene = 5, cpd = 2), bins = list(gene = 5, cpd = 2), na.col = "gray", discrete = list(gene = T, cpd = T)) pv.out <- pathview(gene.data = sel.genes, cpd.data = sim.cpd.data, pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "sel.genes.cpd", keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i], limit = list(gene = 5, cpd = 1), bins = list(gene = 5, cpd = 10), na.col = "gray", discrete = list(gene = T, cpd = F))![](https://www.maimengkong.com/content/uploadfile/202206/630f799ce05d33c5c3298d7befbccde020220629063835.png)
![](https://www.maimengkong.com/content/uploadfile/202206/0d78e1a9a0cd428225edd19d4f66a61120220629063835.png)
#画出人工绘制的通路图ko.data=sim.mol.data(mol.type="gene.ko", nmol=5000)
pv.out <- pathview(gene.data = ko.data, pathway.id = "04112",species = "ko", out.suffix = "ko.data", kegg.native = T)
好了,以上就是使用Pathview画出高大上的基因与代谢通路热图的操作,希望对你有所帮助。如果对Pathview的使用有什么问题可以评论区留言,更多你不知道的生物学小工具教程及下载欢迎继续关注~
转自:唯誉智合
- 本文固定链接: https://maimengkong.com/image/1065.html
- 转载请注明: : 萌小白 2022年6月29日 于 卖萌控的博客 发表
- 百度已收录