首页 > 科研绘图 > R语言绘图:28个实用程序包
2022
06-24

R语言绘图:28个实用程序包

全文注释

# 示例参考帮助文档

# 我用Rstudio重现了所有示例

# 初识R语言,请戳我的原创推文“”与“”

# 使用Stata绘图,请戳我的原创推文“”

# 本文以字母顺序排序程序包

# 更多用于R语言绘图的程序包,欢迎在留言区补充

cartogram

扭曲的地图,以传达统计信息

开发

Sebastian Jeworutzki,

[email protected]

Timothee Giraud;

Nicolas Lambert;

Roger Bivand;

Edzer Pebesma

示例

# 安装并加载包

install.packages("maptools")

library(maptools)

# 绘制非洲边界

data(wrld_simpl)

afr=wrld_simpl[wrld_simpl$REGION==2,]

plot(afr)

# 安装并加载包

install.packages("cartogram")

library(cartogram)

# 使用2005年的非洲人口数据

afr_cartogram <- cartogram(afr, "POP2005", itermax=5)

# 反映非洲人口特征

plot(afr_cartogram)

circlize

圈圈布局、弦图

开发

Zuguang Gu,

[email protected]

示例

# 安装并加载包

install.packages("circlize")

library(circlize)

# 生成数据

name=c(3,10,10,3,6,7,8,3,6,1,2,2,6,10,2,3,3,10,4,5,9,10)

feature=paste("feature ", c(1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5) , sep="")

dat <- data.frame(name,feature)

dat <- with(dat, table(name, feature))

# 绘制弦图

chordDiagram(as.data.frame(dat), transparency = 0.5)

CMplot

圆形曼哈顿图

开发

LiLin-Yin

[email protected]

示例

# 安装并加载包

install.packages("CMplot")

library("CMplot")

# 绘图

CMplot(gwasResults, plot.type="c", r=1.6, cir.legend=TRUE, outward=TRUE, cir.legend.col="black", cir.chr.h=.1 ,chr.den.col="orange", file="jpg", memo="", dpi=300, chr.labels=seq(1,22))

corrgram

相关系数矩阵

开发

Kevin Wright,

[email protected]

示例

# 安装并加载包

install.packages("iterators")

install.packages("corrgram")

library(iterators)

library(corrgram)

# 绘制相关系数矩阵图

corrgram(mtcars, order=TRUE, lower.panel=panel.shade, upper.panel=panel.pie,text.panel=panel.txt, main="Correlogram of mtcar intercorrelations")

corrplot

相关系数矩阵

开发

Taiyun Wei,

[email protected]

Viliam Simko,

[email protected]

示例

# 安装并加载包

install.packages("corrplot")

library(corrplot)

# 计算相关系数

mycor <- cor(mtcars)

# 绘制相关系数矩阵图

corrplot.mixed(mycor, upper = "ellipse")

dygraphs

时间序列数据的可视化

开发

Dan Vanderkam;

JJ Allaire,

[email protected]

Jonathan Owen;

Daniel Gromer;

Petr Shevtsov;

Benoit Thieurmel

示例

# 安装并加载包

install.packages("dygraphs")

library(dygraphs)

# 时间序列

data=data.frame( time=c( seq(0,20,0.5), 40), value=runif(42))

str(data)

dygraph(data)

ellipse

椭圆

开发

Duncan Murdoch,

[email protected]

E. D. Chow

示例

# 安装并加载包

install.packages("ellipse")

library(ellipse)

# 绘制相关系数矩阵图

data(mtcars)

fit <- lm(mpg ~ ., mtcars)

plotcorr(summary(fit, correlation = TRUE)$correlation)

fmsb

雷达图

开发

Minato Nakazawa

[email protected]

示例

# 安装并加载包

install.packages("fmsb")

library(fmsb)

# 生成数据

data=as.data.frame(matrix( sample( 2:20 , 10 , replace=T) , ncol=10))

colnames(data)=c("math" , "english" , "biology" , "music" , "R-coding", "data-viz" , "french" , "physic", "statistic", "sport" )

data=rbind(rep(20,10) , rep(0,10) , data)

# 雷达图参数设置

radarchart(data,axistype=1,pcol=rgb(0.2,0.5,0.5,0.9),pfcol=rgb(0.2,0.5,0.5,0.5), plwd=4, cglcol="grey", cglty=1, axislabcol="grey", caxislabels=seq(0,20,5), cglwd=0.8,vlcex=0.8)

forecast

时间序列分析

开发

Rob J Hyndman,

[email protected]

示例

# 安装并加载包

install.packages("forecast")

library(forecast)

# 使用英国每月死于肺病的人数数据

fit<- auto.arima(mdeaths)

# 设置置信区间

forecast(fit, level=c(80, 95, 99), h=3)

# 绘制时间序列趋势图

plot(forecast(fit), shadecols="oldstyle")

GGally

散点图矩阵

开发

Barret Schloerke,

[email protected]

Jason Crowley,

[email protected]

Di Cook,

[email protected]

Heike Hofmann,

[email protected]

Hadley Wickham,

[email protected]

Francois Briatte,

[email protected]

Moritz Marbach,

[email protected]

Edwin Thoen,

[email protected]

Amos Elberg,

[email protected]

Joseph Larmarange,

[email protected]

示例

# 安装并加载包

install.packages("GGally")

library(GGally)

# 绘制相关系数矩阵图

ggpairs(mtcars, columns = c("mpg", "cyl", "disp"),upper = list(continuous = wrap("cor", size = 10)), lower =list(continuous = "smooth"))

ggplot2

丰富的数据可视化

开发

Hadley Wickham,

[email protected]

Winston Chang,

[email protected]

示例

# 安装并加载包

install.packages("ggplot2")

library(ggplot2)

# 生成数据

variety=rep(LETTERS[1:7], each=40)

treatment=rep(c("high","low"),each=20)

note=seq(1:280)+sample(1:150, 280, replace=T)

data=data.frame(variety, treatment , note)

# 绘制箱线图

ggplot(data, aes(x=variety, y=note, fill=treatment)) +

geom_boxplot()

# 生成数据

set.seed(345)

Sector <- rep(c("S01","S02","S03","S04","S05","S06","S07"),times=7)

Year <- as.numeric(rep(c("1950","1960","1970","1980","1990","2000","2010"),each=7))

Value <- runif(49, 10, 100)

data <- data.frame(Sector,Year,Value)

# 绘制区域图

ggplot(data, aes(x=Year, y=Value, fill=Sector)) +

geom_area()

# 安装并加载包

install.packages("plotly")

install.packages("gapminder")

library(plotly)

library(gapminder)

# 绘制气泡图

p <- gapminder %>%

filter(year==1977) %>%

ggplot( aes(gdpPercap, lifeExp, size = pop, color=continent)) +

geom_point() +

scale_x_log10() +

theme_bw()

ggplotly(p)

ggridges

叠嶂图(山峦图)

开发

Claus O. Wilke,

[email protected]

示例

# 安装并加载包

install.packages("ggridges")

install.packages("ggplot2")

library(ggridges)

library(ggplot2)

# 使用钻石数据

head(diamonds)

# 绘制叠嶂图

ggplot(diamonds, aes(x = price, y = cut, fill = cut)) +

geom_density_ridges() +

theme_ridges() +

theme(legend.position = "none")

hexbin

二维直方图

开发

Dan Carr,

[email protected]

Nicholas Lewin-Koh;

Martin Maechler,

[email protected]

Deepayan Sarkar,

[email protected]

示例

# 安装并加载包

install.packages("hexbin")

install.packages("RColorBrewer")

library(hexbin)

library(RColorBrewer)

# 生成数据

x <- rnorm(mean=1.5, 5000)

y <- rnorm(mean=1.6, 5000)

# 绘制二维散点图

bin<-hexbin(x, y, xbins=40)

my_colors=colorRampPalette(rev(brewer.pal(11,'Spectral')))

plot(bin, main="", colramp=my_colors, legend=F)

igraph

网络图

示例

# 安装并加载包

install.packages("igraph")

library(igraph)

# 生成数据

data=matrix(sample(0:1, 400, replace=TRUE, prob=c(0.8,0.2)), nrow=20)

network=graph_from_adjacency_matrix(data , mode='undirected', diag=F )

# 输出网络

par(mfrow=c(2,2), mar=c(1,1,1,1))

plot(network, layout=layout.sphere, main="sphere")

lattice

点图、核密度图、直方图、柱状图、箱线图、散点图、带状图、平行箱线图、三维图、散点图矩阵等

开发

Deepayan Sarkar,

[email protected]

示例

# 安装并加载包

install.packages("lattice")

library(lattice)

# 查看火山数据

head(volcano)

# 绘制火山的三维等高线图

contourplot(volcano)

# 绘制火山的三维水平图

levelplot(volcano)

# 绘制火山的三维线框图

wireframe(volcano)

# 查看汽车数据

head(mtcars)

# 绘制箱线图

bwplot(mtcars$mpg)

# 绘制平行坐标图

parallelplot(mtcars[1:3])

# 绘制散点图矩阵

splom(mtcars[c(1,3,4,5)])

# 绘制带状图

stripplot(mtcars$mpg~factor(mtcars$cyl))

leaflet

交互式地图

开发

Joe Cheng,

[email protected]

Bhaskar Karambelkar;

Yihui Xie;

Hadley Wickham;

Kenton Russell;

Kent Johnson;

Barret Schloerke;

Vladimir Agafonkin;

Brandon Copeland;

Joerg Dietrich;

Benjamin Becquet;

Norkart AS;

L. Voogdt;

Daniel Montague;

Kartena AB;

Robert Kajic;

Michael Bostock

示例

# 安装并加载包

install.packages("leaflet")

library(leaflet)

# 交互式地图

m=leaflet()

m=addTiles(m)

m

likert

李克特量表数据的可视化

开发

Jason Bryer,

[email protected]

Kimberly Speerschneider

[email protected]

示例

# 安装并加载包

install.packages("likert")

library(likert)

# 使用PISA量表数据

data(pisaitems)

items28 <- pisaitems[, substr(names(pisaitems), 1, 5) == "ST24Q"]

# 绘制条形图

l28 <- likert(items28)

summary(l28)

plot(l28)

maps

地图

开发

Richard A. Becker;

Allan R. Wilks;

Ray Brownrigg

示例

# 安装并加载包

install.packages("maps")

install.packages("geosphere")

library(maps)

library(geosphere)

# 绘制世界地图

map("world")

maptools

地图

开发

Roger Bivand,

[email protected]

Nicholas Lewin-Koh;

Edzer Pebesma;

Eric Archer;

Adrian Baddeley;

Nick Bearman;

Hans-Jörg Bibiko;

Steven Brey;

Jonathan Callahan;

German Carrillo;

Stéphane Dray;

David Forrest;

Michael Friendly;

Patrick Giraudoux;

Duncan Golicher;

Virgilio Gómez Rubio;

Patrick Hausmann;

Karl Ove Hufthammer;

Thomas Jagger;

Kent Johnson;

Sebastian Luque;

Don MacQueen;

Andrew Niccolai;

Edzer Pebesma;

Oscar Perpiñán Lamigueiro;

Tom Short;

Greg Snow;

Ben Stabler;

Murray Stokely;

Rolf Turner

示例

# 安装并加载包

install.packages("maptools")

library(maptools)

# 绘制非洲边界

data(wrld_simpl)

afr=wrld_simpl[wrld_simpl$REGION==2,]

plot(afr)

performanceAnalytics

绩效指标计算与可视化

开发

Brian G. Peterson,

[email protected]

Peter Carl

示例

# 安装并加载包

install.packages("PerformanceAnalytics")

library(PerformanceAnalytics)

# 列出待计算变量

mydata <-mtcars[c('mpg','cyl','disp','hp','drat')]

# 绘制相关系数矩阵图

chart.Correlation(mydata, histogram=TRUE, pch=19)

plotly

交互式可视化

开发

Carson Siever,

[email protected]

Chris Parmer,

[email protected]

Toby Hocking,

[email protected]

Scott Chamberlain,

[email protected]

Karthik Ram,

[email protected]

Marianne Corvellec,

[email protected]

Pedro Despouy,

[email protected]

示例

# 安装并加载包

install.packages("plotly")

library(plotly)

# 查看火山数据

head(volcano)

# 绘制火山的三维交互图

p=plot_ly(z = volcano, type = "surface")

p

qcc

统计质量控制

开发

Luca Scrucca,

[email protected]

Greg Snow,

[email protected]

Peter Bloomfield,

[email protected]

示例

# 安装并加载包

install.packages("qcc")

library(qcc)

# 均值为10的序列,加上白噪声

x <- rep(10, 100) + rnorm(100)

# 测试序列,均值为11

new.x <- rep(11, 15) + rnorm(15)

# 标记出新的点

qcc(x, newdata=new.x, type="xbar.one")

qqman

曼哈顿图

开发

Stephen Turner

示例

# 安装并加载包

install.packages("qqman")

library(qqman)

# 使用gwasResults数据绘制曼哈顿图

manhattan(gwasResults, chr="CHR", bp="BP", snp="SNP", p="P" )

REmap

地图

开发

Dawei Lang,

[email protected]

示例

# 安装并加载包

install.packages("devtools")

install_github("lchiffon/REmap")

library(devtools)

library(REmap)

# 标注起始点

origin<-c("济南","西安","成都")

destination<-c("西安","成都","济南")

# 制作迁徙地图

dat = data.frame(origin,destination)

out = remap(dat,title = "after-graduation trip ",subtitle= "zg434")

plot(out)

scatterplot3d

三维散点图

开发

Uwe Ligges,

[email protected]

Martin Maechler;

Sarah Schnackenberg

示例

# 安装并加载包

install.packages("scatterplot3d")

library(scatterplot3d)

# 生成数据

x1=round(rnorm(100,mean=80,sd=1))

x2=round(rnorm(100,mean=80,sd=5))

x3=round(rnorm(100,mean=80,sd=10))

x=data.frame(x1,x2,x3)

# 绘制三维散点图

scatterplot3d(x[1:3])

TeachingDemos

脸谱图

开发

Greg Snow,

[email protected]

示例

# 安装并加载包

install.packages("TeachingDemos")

library(TeachingDemos)

# 生成数据

x1=round(rnorm(100,mean=80,sd=1))

x2=round(rnorm(100,mean=80,sd=5))

x3=round(rnorm(100,mean=80,sd=10))

x=data.frame(x1,x2,x3)

# 绘制脸谱图

faces(x)

treemap

树图

开发

Martijn Tennekes,

[email protected]

示例

# 安装并加载包

install.packages("treemap")

library(treemap)

# 生成数据

group=c("group-1","group-2","group-3")

value=c(13,5,22)

data=data.frame(group,value)

# 绘制树图

treemap(data, index="group", vSize="value", type="index")

vioplot

小提琴图

开发

Daniel Adler,

[email protected]

Romain Francois,

[email protected]

示例

# 安装并加载包

install.packages("vioplot")

library(vioplot)

# 生成数据

treatment=c(rep("A", 40) , rep("B", 40) , rep("C", 40) )

value=c( sample(2:5, 40 , replace=T) , sample(c(1:5,12:17), 40 , replace=T), sample(1:7, 40 , replace=T) )

data=data.frame(treatment,value)

# 绘制小提琴图

with(data , vioplot( value[treatment=="A"] , value[treatment=="B"], value[treatment=="C"], col=rgb(0.1,0.4,0.7,0.7) , names=c("A","B","C") ))

版权声明

本文转载自阿虎定量笔记公众号。文章转载只为学术新闻信息的传播,不代表我公众号所持的观点。



最后编辑:
作者:萌小白
一个热爱网络的青年!

发布评论

表情