首页 > 科研绘图 > PCA、LDA、MDS、LLE、TSNE等降维算法的Python实现
2022
08-19

PCA、LDA、MDS、LLE、TSNE等降维算法的Python实现

整理 | 夕颜

【导读】网上关于各种降维算法的资料参差不齐,但大部分不提供源代码。近日,有人在 GitHub 上整理了一些经典降维算法的 Demo(Python)集合,同时给出了参考资料的链接。

  1. PCA

资料链接:https://blog.csdn.net/u013719780/article/details/78352262

https://blog.csdn.net/u013719780/article/details/78352262

https://blog.csdn.net/weixin_40604987/article/details/79632888

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/PCA

  1. KPCA

资料链接:https://blog.csdn.net/u013719780/article/details/78352262

https://blog.csdn.net/weixin_40604987/article/details/79632888

https://blog.csdn.net/u013719780/article/details/78352262

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/PCA

  1. LDA

资料链接:https://blog.csdn.net/ChenVast/article/details/79227945

https://www.cnblogs.com/pinard/p/6244265.html

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LDA

  1. MDS

资料链接:https://blog.csdn.net/zhangweiguo_717/article/details/69663452?locationNum=10&fps=1

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/MDS

  1. ISOMAP

资料链接:https://blog.csdn.net/zhangweiguo_717/article/details/69802312

http://www-clmc.usc.edu/publications/T/tenenbaum-Science2000.pdf

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/ISOMAP

  1. LLE

资料链接:https://blog.csdn.net/scott198510/article/details/76099630

https://www.cnblogs.com/pinard/p/6266408.html?utm_source=itdadao&utm_medium=referral

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LLE

  1. TSNE

资料链接:http://bindog.github.io/blog/2018/07/31/t-sne-tips/

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/T-SNE

  1. AutoEncoder

  1. FastICA

资料链接:https://blog.csdn.net/lizhe_dashuju/article/details/50263339

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/ICA

  1. SVD

资料链接:https://blog.csdn.net/m0_37870649/article/details/80547167

https://www.cnblogs.com/pinard/p/6251584.html

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/SVD

  1. LE

资料链接:https://blog.csdn.net/hustlx/article/details/50850342

https://blog.csdn.net/jwh_bupt/article/details/8945083

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LE

  1. LPP

资料链接:https://blog.csdn.net/qq_39187538/article/details/90402961

https://blog.csdn.net/xiaohen123456/article/details/82288222

GitHub代码:https://github.com/heucoder/dimensionality_reduction_alo_codes/tree/master/codes/LPP

此外,作者还指出本次整理的降维算法实现环境为 Python3.6、ubuntu18.04(windows10) ,需要的库包括 numpy、sklearn、tensorflow 和 matplotlib,且具有以下特点:

  • 每一个代码都可以单独运行,但是只是作为一个demo,仅供学习使用;

  • 其中 AutoEncoder 只是使用 AutoEncoder 简单地实现了一个 PCA 降维算法,自编码器涉及到了深度学习领域,其本身就是一个非常大的领域;

  • LE 算法的鲁棒性极差,对近邻的选择和数据分布十分敏感;

  • 2019.6.20 添加了 LPP 算法,但是效果没有论文上那么好,有点迷,后续需要修改。

项目 GitHub 链接:https://github.com/heucoder/dimensionality_reduction_alo_codes

转自AI科技大本营


最后编辑:
作者:萌小白
一个热爱网络的青年!

发布评论

表情